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DM-RIS: Deep Multimodel Rail Inspection System
With Improved MRF-GMM and CNN
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Abstract— Rail inspection system (RIS) remains an emergent
instrumentation for railway transportation, with its capacity
of measuring surface defect on steel rail. However, detecting
technique and interpretation of RIS constitute a challenging
problem since traditional technologies are expensive and prone
to errors. In this paper, a deep multimodel RIS (DM-RIS) is
established for surface defect where fast and robust spatially
constrained Gaussian mixture model is presented for segmenta-
tion proposal and Faster RCNN is utilized for objective location
in a parallel structure. First, we incorporate spatial information
between pixels into an improved Gaussian mixture model based
on Markov random field (MRF) for accurate and rapid defect
edge segmentation. Specifically, a direct parameter-learning in
expectation–maximization (EM) algorithm is proposed. Mean-
while, to remove nondefect, numerous labeled samples with
weak illumination, inequality reflection, external noise, rust,
and greasy dirt are fed into Faster RCNN so that DM-RIS
is robust environmentally to various light, angle, background,
and acquisition equipment. Finally, the joint hit area refers
to a real defect. The experimental results demonstrate that
the proposed method performs well with 96.74% precision,
94.13% recall, 95.18% overlap, and 0.485 s/frame speed on
average, and is robust compared with the related well-established
approaches.

Index Terms— Faster RCNN, improved Gaussian mixture
model (GMM), Markov random field (MRF), rail inspection,
surface defect, visual detection.
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I. INTRODUCTION

RAIL inspection counts a great deal for railway transporta-
tion while several traditional and contact measurement

techniques are still applied for rail damage monitoring, result-
ing in severe misjudgment, omission, and low speed. The exist-
ing technologies are facing lots of challenging tasks, including
early detection, reliability, and system cost. Recently, some
nondestructive testing (NDT) methods, such as an eddy current
method [1], acoustic emission (AE) method [2], and ultrasonic
methods [3]–[5], have been developed to detect failures in the
rail steel. A closed loop of eddy current pulsed thermography
(ECPT) [1] enables to identify and measure rail flaw with pre-
processing and quantitative assessment. However, inspection
of the subsurface defect cannot be taken into account and mul-
tiple types of defects fail to display directly. Zhang et al. [2]
present an improved AE rail defect detection method by
multilevel adaptive noise canceling (ANC) with variable step-
size least mean square, where the features of noise signals
and defect signals are analyzed for effective detection. Further-
more, structural health monitoring (SHM) techniques by mea-
suring full-field strain, structural deformation with ultrasonic
piezoelectric transducer [3], and geometry profiles with 3-D
digital image correlation (DIC) system [4] would detect poten-
tial hazards at an early stage meanwhile providing an efficient
way to extend the operational life of railway structures, while
not interfering with train operations. Mariani et al. [5] work
on the development of noncontact (laser) rail inspection system
(RIS), making it less sensitive to surface conditions with ultra-
sonic waves probing. In addition, Molodova et al. [6] present
a new measuring method using axle box acceleration (ABA) to
inspect squats. Similar work is published by Salvador et al. [7]
on Metropolitan Rail Network of Valencia (Spain) to monitor
track defects, singularities, and vibration modes.

Visual approaches [8], [9] play critical roles in rail compo-
nent detection such as fastener [10], [11], train chassis [12],
tie and tie plate [13], [14], and anchor [15]. An automatic
visual detection system [10] is provided for partially worn and
completely missing fastener. In particular, a novel probabilistic
structure topic model (STM) is introduced to model fastener
with different orientations and illumination conditions using
unlabeled data. A fused approach [11] combining principal
component analysis (PCA) with depth peeks (DPs) is utilized
to analyze the depth image of hexagonal headed fastener.
Lu et al. [12] propose time-scale normalization and image
subtraction approach for multiple fault detection on China
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Railway High-speed. The detection algorithm [13], [14] relies
on signature tunes of the squats, which were identified from
numerical simulations and validated by field measurements.
Li et al. [15] first develop a set of image and video analytics
and then integrate evidence from multiple cameras, global
positioning system (GPS), and distance measurement instru-
ment (DMI) in a global framework to monitor ties, tie plates,
and anchors. The methods above seem to be encouraging;
however, problems like heavy shadow and light overexposure
cannot be addressed with ease.

Distinguished from component detection, more interest
has grown in noise removal. Resendiz et al. [16] combine
Gabor filters with spectral estimation to convert a filtered
image into 1-D signals. Specifically, multiple signal classi-
fication (MUSIC) algorithm is proposed to extract periodic
signals from the 1-D signal so component, turnout, and tie
on track can be identified in the presence of noise. Several
most relevant researches for rail surface maintenance are
reported in [17]–[20]. Specifically, to extract the weak signals
from strong background noises, a combined technique [20]
of ANC and time frequency is provided for condition mon-
itoring and fault diagnosis of railway wheel flat and rail
surface defect. Other image processing methods are utilized
to eliminate interference from illumination variation. In our
initial work [21], we present a novel inverse Perona–Malik
(P-M) diffusion model for rail surface enhancement and noise
removal. In addition, rail image enhancement is also applied to
detect headcheck, undulation, scour, and fracture defects [22].
In summary, many techniques are proposed to suppress noise
and enhance the image for rail surface defect detection.
However, a pixelwise gray feature is taken advantage of in
a simple way, and moreover, rail image can be extremely
complex with much high frequency, including noisy diffusion,
weak illumination, and rust and greasy dirt, making it difficult
to identify defect and extract edge.

At present, numerous updated research studies label numer-
ous objectives like fastener, loose strand, split pins (SPs),
surface squat, and crack for a trained classifier and neural
network. Gibert et al. [23], [24] propose multiple detectors
within a multitask deep learning framework to inspect ties
and fasteners on a railway track. Faghih-Roohi et al. [25]
present deep convolutional neural network (DCNN) of differ-
ent architectures characterized by different sizes and activation
functions for defect detection on steel rail. Chen et al. [26]
cascade three DCNN-based detection stages in a coarse-to-fine
manner, including two detectors to sequentially localize
the cantilever joints and their fasteners and a classifier to
diagnose the fasteners’ defects. Liu et al. [27] use Faster
RCNN-based image location method improved by a feature
extraction network named ILNET, then apply a Markov ran-
dom field (MRF)-based image segmentation method itera-
tion condition model/maximization of the posterior marginal
in an automatic fault diagnosis system for the detection
of isoelectric line loose strands. Masci et al. [28] propose
a Max-pooling CNN for steel defect classification on raw
segmented images, which avoids time-consuming preprocess-
ing. Zhong et al. [29] present a three-stage automatic defect
inspection system for SPs mainly based on an improved

DCNN, which is called PVANET++. In [30], CNNs are
trained on a database of photometric stereo images of
metal surface defects, i.e., rail defects. In addition, due
to CNNs outstanding performance, several recent studies
utilize it for defect detection including road cracks [31],
concrete cracks [32], and cracks on nuclear power plant
components [33], [34].

Rail surface defects almost come from wheel–rail contact
stresses such as extrusion, impact, and abrasion as well as
material degradation [35], [36]. The most common surface
defects are squat, spalling, joint (broken rail), flaking, rolling
contact fatigue crack, interior nuclear damage, crush, side
wear, peel, corrosion, weld, and so on [37]. For instance, squat
is a type of metal fatigue resulting from wheel impacts on
the railhead, which “bruise” the steel and over time lead to
degradation of the track. The cluster of base metal falling
off railhead in series refers to spalling. Some hidden damage
would further deteriorate metal and lead to rail joint if not con-
trolled. Hence, periodical rail inspection is essential. Recently,
a four-stage detection method based on curvature filter and
improved Gaussian mixture model (GMM) is proposed in our
previous work [38]. However, there are some problems and
great challenges for RIS as follows.

1) RIS is supposed to be universal or robust environ-
mentally. Steel rail is always exposed to the severe
environment, making it low contrast by weak illumina-
tion, staggered bright and dark by reflection inequality,
and noisy diffusion by rust and greasy dirt. In [38],
quantitative analysis was only based on the limited and
quite simple rail samples, without any big data analysis-
based complex and diverse rail images.

2) RIS is in demand to obtain the edge of the defect
with high accuracy. Although the method in [38] is
more effective compared with other methods, many
errors appear like tiny fuzzy defects that do not need
to be inspected in project, rust and greasy dirt that
are incorrectly segmented, and noisy background, which
affect the judgment of real defect.

3) RIS ought to be real-time and highly efficient. In [38],
the step-by-step image preprocessing containing region
of interest (ROI) extraction, gray equalization, and cur-
vature filter is much time- and memory-consuming,
which affects the detection speed of the entire project.

To address these problems, a deep multimodel RIS (DM-
RIS) is proposed and we summary main contributions in this
paper as follows.

1) An end-to-end parallel architecture with multiple models
is established for rail inspection.

2) DCNN framework achieves considerable defect detec-
tion speed and environmental robustness.

3) Fast and robust spatially constrained Gaussian mixture
model (FRGMM) with direct parameter-learning is pro-
posed for fast, robust, and precise segmentation.

4) Big data analysis is conducted based on more complex
and diverse rail samples.

This paper is organized as follows: In Section II, imag-
ing equipment and rail surface data set are explained.
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Fig. 1. 3-D illustration and physical map of imaging equipment.

In Section III, defect segmentation and detection algorithms
are described briefly. Experimental results and quantitative
analysis are provided in Section IV. In Section V, a reasonable
discussion makes sense. Finally, the conclusion is given in
Section VI.

II. SYSTEM OVERVIEW

A. System Configuration

At the project site, the imaging quality of the rail scene
is affected by many factors, such as illumination, exposure
degree, incidence angle, camera motion, line speed, and vibra-
tion. For this purpose, an imaging mechanism is proposed for
image acquisition. As shown in Fig. 1, an imaging system
is equipped with a railway track inspection vehicle. One of
the core components is a DalsaSpyder3 line scan camera,
which can capture a series of consecutive video frames with
1024 pixels resolution and 68 000 lines/s maximum row speed.
Note that image distortion would occur if camera velocity and
line rate were mismatched. For synchronous data acquisition,
a wheel encoder is utilized to trigger line scan camera, arc
groove is applied to adjust the angle of incidence, and illumi-
nation is affected by a light controller as well as exposure
degree. Panorama is generated based on a set of frames.
Vibration slot is applied to reduce vibration with damping.
In addition, rail surface images are inevitably affected by
natural light, rust, and greasy dirt, bringing a great challenge
to defect inspection. Also, the image is detected in real time
by the processor.

B. Rail Surface Data Set

One concern of this paper is the scene segmentation on the
complex and diverse rail surface. Thus, we sort out a rail data
set of 6 categories, 450 samples for each category, and totally
2700 samples. All samples are RGB images of 250 × 160
and are acquired in Hunan province railways and [21], [25],
and [38]. Due to the physical structure of rail, all images are
staggered bright and dark by inequality reflection, which can
be divided into two parts, namely, the simple and the complex.
As shown in Table I, for a simple scene, C1 is smooth
and clean rail surface, and C2 is C1 corrupted by Gaussian
noise (smooth, noisy). For a complex scene, C3 is rough rail
surface with rust and greasy dirt, and C4 is C3 corrupted by
Gaussian noise (rough, noisy), and C5 is C3 corrupted by salt
pepper noise (rough, noisy), and C6 is very dark due to weak
illumination.

C. Framework of Proposed Detection Approach

As shown in Fig. 2, aiming to complex and diverse rail
surface, a DM-RIS is proposed where a probabilistic graph

TABLE I

RAIL SURFACE DATA SET

model FRGMM generates the segmentation proposal and deep
learning model Faster RCNN carries out the objective location.
On the upward path, FRGMM performs on global image to
achieve presegmentation, which is more accurate, robust, and
faster due to a simpler MRF distribution and an efficient
factor Gij proposed to incorporate spatial information between
neighboring pixels, so that the M-step of EM algorithm could
be directly applied to prior distribution for the maximization
of log-likelihood function. However, many errors occur like
tiny fuzzy defect, rust and greasy dirt, and noisy background,
which affect the judgment of real defect. On the downward
path, to address this problem, Faster RCNN predicts the
physical position of the defect in a bounding box. To make it
universal and robust to various rail scenes, in-depth convolu-
tion features of the full image are shared for region proposal
and regression correction, making detection much fast and
accurate, without any repeated computation. Finally, the joint
hit area refers to real defect with high accuracy and precision.

III. DEFECTS DETECTION METHOD

A. Segmentation Model FRGMM

An improved MRF-based GMM is proposed to segment
defects more quickly, accurately, and robustly. In comparison
to other mixture models with high computational expense,
we incorporate spatial information between neighboring pix-
els, so that the M-step of expectation–maximization (EM)
algorithm can be directly applied to the prior distribution.
Hence, a new method is a FRGMM, which can be written as
FRGMM. The following will be introduced into three parts.

1) Gaussian Mixture Model: A background modeling
method based on pixel sample statistics, which is also the
basis of the new method.

Let xi , i = (1, 2, . . . , N), represents the i th pixel of
a D-dimension image and ∂i represents the neighborhood
of xi . Then, � j , j = (1, 2, . . . , K ), represents the j th label
of image. To separate the image from N pixels into K
labels, standard GMM [39], [40] supposes that each pixel xi

is independent of label � j . For this, the density function
corresponding to a pixel xi is defined as

f (xi |�,�) =
K∑

j=1

πi j φ(xi |� j ) (1)

where � = {πi j }, i = (1, 2, . . . , N), j = (1, 2, . . . , K ), is the
prior distribution set modeled from the probability of pixel xi
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Fig. 2. Pipeline of rail surface defect detection approach.

being in label � j , with a constraint condition as follows:

0 ≤ πi j ≤ 1 and
K∑

j=1

πi j = 1 (2)

and φ(xi |� j ) is the Gaussian distribution named a component
of mixture model and specifically it denotes as

φ(xi |� j ) = 1

(2π)D/2

1

|� j |1/2

× exp

{
−1

2
(xi − μ j )

T �−1
j (xi − μ j )

}
(3)

where � j = {μ j ,� j }, j = (1, 2, . . . , K ), with the mean μ j

of D-dimension vector, the covariance � j of D × D matrix,
and |� j | is the determinant of � j .

According to the assumption of GMM, pixel xi is modeled
independent in statistics, thus the joint density function of data
set X = (x1, x2, . . . , xN ) denotes as

p(X |�,�) =
N∏

i=1

f (xi |�,�) =
N∏

i=1

K∑
j=1

πi j φ(xi |� j ). (4)

A major drawback is that pixel xi is regarded as independent
in the label so that the spatial consistency between adjacent
pixels cannot be taken into account, making the standard
GMM much sensitive to noise and illumination [40], which
is not robust for complex rail surface segmentation.

2) Mixture Model Based on MRF: To improve 1), the intro-
duced MRF distribution incorporates local information, but
increases the difficulty of model solution.

MRF distribution [41] is utilized in such form

p(�) = Z−1 exp

{
− 1

T
U(�)

}
(5)

where U(�) represents the energy named as smoothing prior,
Z and T represent normal constant and temperature constant,

respectively. Having Bayessian rules, the posterior probability
density function satisfies the following relations:

p(�,�|X) ∝ p(X |�,�)p(�). (6)

Combining (5) with (6), log-likelihood function is given as

L(�,�|X)

= log(p(�,�|X))

=
N∑

i=1

log

⎧⎨
⎩

K∑
j=1

πi j φ(xi |� j )

⎫⎬
⎭ + log p(�)

=
N∑

i=1

log

⎧⎨
⎩

K∑
j=1

πi j φ(xi |� j )

⎫⎬
⎭ − log Z − 1

T
U(�). (7)

Taking a close look at (7), the attribute of a model almost
depends on the structure of energy U(�). For instance, in an
MRF-based method [41], spatial information is taken into
account with four considered directions, namely, horizontal,
vertical, and two diagonal. In another Bayesian logic [42],
two indexes Z and T in smoothing prior U(�) are set to
1 for image segmentation. For more details regarding the
energy U(�) and mixture models, we refer the readers to [40]
and [43]–[45].

As can be seen above, different structures of smoothing
priors U(�) and MRF distribution increase the complexity of
the model, although they are effective to integrate correlation
between neighboring pixels. For this purpose, an iterative EM
algorithm is utilized to maximize the probability of parameters
� and � in (7). However, the M-step of EM algorithm fails
to solve the prior distribution πi j directly, due to likelihood
function with high computational expense. Moreover, the con-
straint condition in (2) deteriorates the solution. In summary,
traditional models are time- and energy-consuming to opti-
mize. For details, we refer the readers to [40], [43], and [44].
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3) Proposed Model FRGMM: To improve 2), an efficient
factor Gij is proposed to simplify EM algorithm solution,
making unsupervised learning easier to implement. In order
to address problems above, we propose a novel factor Gij

defined as

G(t)
i j = exp

⎡
⎣ β

2Ni

∑
m∈∂i

(
z(t)

mj + π
(t)
mj

)
⎤
⎦ (8)

where β is the temperature coefficient to control energy U(�),
Ni is the amount of pixels in neighborhood ∂i , zmj is the
posterior probability, πmj is the prior distribution, t is the
iteration step. In this study, we use a window of 5 × 5 size
to traverse global image so that Ni = 25. An important
consideration is that factor Gij can be considered as a linear
filter, which is defined as a multiplication of both posterior
probability and prior probability. Thus, it enables to smooth
image and filter out noises. In addition, it is known to all that
there is a similarity among adjacent pixels in an image. For
this, we replace each prior probability and posterior proba-
bility in a neighborhood with the average value of adjacent
pixels, including itself. Note that factor Gij only depends on
the prior and posterior at previous iteration (at the t step).
Hence, the proposed model is capable of incorporating spatial
information of adjacent pixels in a simpler and more efficient
way.

In particular, a new way is proposed to incorporate the
spatial information between adjacent pixels into the smoothing
prior U(�), which is defined as

U(�) = −
N∑

i=1

K∑
j=1

G(t)
i j log π

(t+1)
i j . (9)

It can be seen in (9) that, at current step (t + 1 step),
the derivative of smoothing prior U(�) with regard to prior
distribution π

(t+1)
i j is only related to the π

(t+1)
i j term, i.e., the

M-step of EM algorithm can be directly applied for πi j in
our model, which is much simpler and effective. From (5),
the MRF distribution can be updated by

p(�) = Z−1 exp

⎧⎨
⎩

1

T

N∑
i=1

K∑
j=1

G(t)
i j log π

(t+1)
i j

⎫⎬
⎭ . (10)

From (7), the log-likelihood function is also updated by

L(�,�|X) =
N∑

i=1

log

⎧⎨
⎩

K∑
j=1

π
(t+1)
i j φ

(
xi

∣∣�(t+1)
j

)
⎫⎬
⎭

− log Z + 1

T

N∑
i=1

K∑
j=1

G(t)
i j log π

(t+1)
i j . (11)

In [40], complete data condition theory has proven that an
objective function would increase as log-likelihood function
rises in (11). The objective function L(�,�|X) is defined as

J (�,�|X) =
N∑

i=1

K∑
j=1

z(t)
i j

{
log π

(t+1)
i j + log φ

(
xi

∣∣�(t+1)
j

)}

− log Z + 1

T

N∑
i=1

K∑
j=1

G(t)
i j log π

(t+1)
i j . (12)

In addition, the conditional expectation value zi j of the
hidden variables denotes as

z(t)
i j = π

(t)
i j φ

(
xi

∣∣�(t)
j

)
∑K

k=1 π
(t)
ik φ

(
xi

∣∣�(t)
k

) . (13)

So far, (8)–(13) have derived the model estimation rule of
the E-step of EM algorithm in FRGMM.

Next, the purpose of optimizing the parameters set {�,�} is
to further maximize the objective function J (�,�|X) in (12).
In this study, both Z and T is set to 1, so that the objective
function can be updated as

J (�,�|X) =
N∑

i=1

K∑
j=1

z(t)
i j

{
log π

(t+1)
i j + log φ

(
xi

∣∣�(t+1)
j

)}

+
N∑

i=1

K∑
j=1

G(t)
i j log π

(t+1)
i j . (14)

Combining it with (3), the objective function denotes as

J (�,�|X)

=
N∑

i=1

K∑
j=1

z(t)
i j

{
log π

(t+1)
i j − D

2
log(2π) − 1

2
log

∣∣�(t+1)
j

∣∣}

+
N∑

i=1

K∑
j=1

z(t)
i j

{
−1

2

(
xi − μ

(t+1)
j

)T
�

(t+1)
j

(
xi − μ

(t+1)
j

)}

+
N∑

i=1

K∑
j=1

G(t)
i j log π

(t+1)
i j . (15)

Here, let us analyze the derivation of function J (�,�|X)
with regard to means μ j at the (t + 1) iteration step, which is
given by

∂ J

∂μ
(t+1)
j

=
N∑

i=1

z(t)
i j

[
−1

2

(
2�

−1(t+1)
j − 2�

−1(t+1)
j xi

)]
. (16)

As the differential equation satisfies (∂ J/∂μ j ) = 0, μ j has
the minimum value at (t + 1) step

μ
(t+1)
j =

∑N
i=1 z(t)

i j xi∑N
i=1 z(t)

i j

. (17)

Similarly, taking the derivative of function J (�,�|X) with
regard to

∑−1
j yields

∂ J

∂
∑−1(t+1)

j

=
N∑

i=1

z(t)
i j

⎡
⎣1

2

(t+1)∑
j

−1

2

(
xi − μ

(t+1)
j

)(
xi − μ

(t+1)
j

)T

⎤
⎦ (18)

then set it equal to zero and we have

�
(t+1)
j =

∑N
i=1 z(t)

i j

(
xi − μ

(t+1)
j

)(
xi − μ

(t+1)
j

)T

∑N
i=1 z(t)

i j

. (19)
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An important consideration is that prior distribution should
satisfy the constraints in (2). To enforce these constraints,
we use Lagrange’s multiplier ηi for each data point

∂

∂π
(t+1)
i j

⎡
⎣J −

N∑
i=1

ηi

⎛
⎝ K∑

j=1

π
(t+1)
i j − 1

⎞
⎠

⎤
⎦ = 0. (20)

Equation (20) can be rewritten in the following form:

z(t)
i j

π
(t+1)
i j

+ G(t)
i j

π
(t+1)
i j

− ηi = 0. (21)

Lagrange multiplier ηi should be given as follows because
of the constraint

∑K
j=1 πi j = 1

ηi = 1 +
K∑

j=1

G(t)
i j . (22)

Considering after (t + 1) step, the necessary condition for
prior distribution πi j denotes as

π
(t+1)
i j = z(t)

i j + G(t)
i j∑K

k=1

(
z(t)

ik + G(t)
ik

) . (23)

So far, (15), (17)–(19), and (23) have derived the parameter
{�,�} optimization rule of the M-step of EM algorithm in
FRGMM. Once the parameter-learning phase is completed,
each pixel xi is distributed to corresponding label � j with a
largest posterior probability zi j

xi ∈ � j : IF zi j ≥ zik ; j, k = (1, 2, . . . , K ). (24)

B. Location Model Faster RCNN

A state-of-the-art detection algorithm Faster
RCNN [46], [47] is studied to locate the defect on complex
and diverse rail surface, making the proposed DM-RIS robust
environmentally to meet different light, angle, background,
and acquisition equipment.

1) Region Proposal Network: Distinguished from selective
search (SS) [48] and EdgeBoxes [49], region proposal net-
work (RPN) estimates any possible regions of rail defects
with a pretrained CNN. VGG-16 is given as feature extractor.
A 3 × 3 window (convolution kernel) is utilized to slide
on feature map to generate a 512-D vector. Then, it is fed
into two parallel fully connected (FC) layers, which are box
classification layer (cls) and box regression layer (reg). For
each window, k = 9 anchors are proposed with three size and
three length–width ratio. For this, the reg has 4×9-dimensional
output for coordinate coding of nine estimated boxes, and cls
has 2×9-dimensional output for score that each estimated box
is target.

2) Fast RCNN: The Fast RCNN is provided for surface
defect location in each rail image. ROI pooling layer uses spa-
tial pyramid pooling. Then, feature vector is fed into Softmax
classification layer and bounding regression layer, respectively,
through FC layer for category prediction and bounding box
correction [47]. Moreover, nonmaximal suppression (NMS)
would eliminate repeated bounding boxes. The cost function
for training Fast RCNN is given by

L(p, u, tu , v) = Lcls(p, u) + λ[u ≥ 1]Lreg(t
u, v) (25)

Fig. 3. Evaluation on noise robustness of FRGMM. (a) Original image,
ground truth (GT), noise examples corrupted Gaussian and salt pepper in
(a1)–(a4), respectively. (b) Results of Gaussian images with density k = 0.01,
0.07, 0.09, 0.10 in (b1)–(b4). (c) Results of salt pepper images with density
q = 0.01, 0.11, 0.12, 0.13 in (c1)–(c4). (d) How denoising performance
(measured by PSNR) changes as noise increases.

where Lcls is the classification cost, Lreg is the bounding
regression cost, p is the classification prediction result, u is the
u-class, tu is the modified value of u-class bounding regression
prediction, and v is the actual modified value.

IV. EXPERIMENT AND ANALYSIS

A. Segmentation Proposal by FRGMM

1) Factor-Based Performance Evaluation: In (8), a novel
factor Gij is proposed to incorporate spatial information into
the MRF-based GMM, making it robust to noise. To verify
this, the first experiment is provided.

Fig. 3(b) presents several representative results under
Gaussian noise of various densities k. Fig. 3(b1) is
slightly polluted [k = 0.01, peak signal-to-noise ratio
(PSNR) = 39.12 dB] so that segmented defect has remark-
able boundary. With moderate noise, some edge details are
lost in Fig. 3(b2) (k = 0.07, PSNR = 32.57 dB). So far,
the Gaussian noise has been effectively filtered out; however,
FRGMM wrongly segments the background in the challenging
example shown in Fig. 3(b3) with PSNR = 12.88 dB. Note
that FRGMM fails in Fig. 3(b4) once any noise appears in the
blue box (k = 0.10, PSNR = 6.68 dB).

Similar work is conducted on salt pepper images of var-
ious densities q . Fig. 3(c1) is slightly polluted (q = 0.01,
PSNR = 41.72 dB) so that segmented defect has sufficient
edge details. In Fig. 3(c2), FRGMM performs, well although
a little pepper noise remained around defect area (q = 0.11,
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TABLE II

COMPUTATIONAL COST (IN SECONDS) OF SVFMM AND FRGMM

PSNR = 33.54 dB). With severe noise of q = 0.12, most of
the edge details are lost in Fig. 3(c3) with PSNR = 18.22 dB.
Note that FRGMM fails in Fig. 3(c4) because there is a large
amount of noise remained in the global result and rail defect
cannot be identified.

Comprehensively, Fig. 3(d) shows how the denoising per-
formance measured by PSNR changes in various noise con-
ditions. It can be seen that FRGMM works at one-third of
the best performance at P1, P2, and P3, which indicates that
it is not competent for segmentation and denoising tasks at
such noise levels. Here, we consider one-third of MaxPSNR
value as a threshold for judging good or poor robustness.
Specifically, for the Gaussian noise, FRGMM performs well
up to k = 0.09, whereas for salt and pepper noise, it works
up to q = 0.12. For mixture noise which is mixed by the
Gaussian and salt pepper at a ratio of 1:1, it is competent
up to k(q) = 0.11. An important consideration is that, in our
rail surface imaging system, the noise is with a density
of 0.03–0.06 in usual, thus it can be seen that FRGMM is
not only an effective segmentation tool but also a good filter.

In (9), an effective smoothing prior U(�) is defined to
make the derivative with respect to prior distribution πi j at
the current step (at t + 1 step) only dependent to term π

(t+1)
i j ,

so that the M-step of EM algorithm is much simpler and easy
to implement. Next experiment is provided to verify it.

We perform our method on rail image (Fig. 3) to compare
with spatially variant finite mixture model (SVFMM) [44].
Both methods are initialized under the same initial condi-
tion and log-likelihood functions iterate toward convergence.
Results show that FRGMM converts at the 15th iteration,
whereas SVFMM converts slowly after the 25th iteration.
In addition, we look inside each iteration of SVFMM and
our method in Table II. At each iteration, the cost of E-step is
almost the same in both methods. However, since the M-step of
SVFMM cannot be directly applied to prior distribution, more
time is consumed to maximize the log-likelihood function,
proving that our FRGMM is faster and simpler.

2) Sample-Based Performance Evaluation: Next, we take
into account the pervasiveness or environmental robustness
of FRGMM. Fig. 4 shows the results of different mixture
models on various rail samples. Note that rail surface C1 and
C2 belong to simple scene, which has been tested before [38].
However, the performance on complex rail surface such as C3,
C4, C5, and C6 has not ever been discussed, which is a concern
of this paper.

An important consideration is that several advanced
mixture models are used for comparison, e.g., K -means algo-
rithm, standard GMM [39], SVFMM [44], Student-T mix-
ture model, and two MRF-based mixture models, namely,

Fig. 4. Results of different mixture models on various rail samples
(a1)–(a9) for C1, (b1)–(b9) for C2, (c1)–(c9) for C3, (d1)–(d9) for
C4, (e1)–(e9) for C5, and (f1)–(f9) for C6, horizontally, and (a1)–(f1)
original image, (a2)–(f2) GT, (a3)–(f3) K -means, (a4)–(f4) GMM,
(a5)–(f5) SVFMM, (a6)–(f6) SIMF, (a7)–(f7) MEANF, (a8)–(f8) Student-T,
and (a9)–(f9) proposed FRGMM, vertically. Red box: real defect. Blue box:
false segmentation.

simulated field algorithm (SIMF) and mean field algorithm
(MEANF) [50], [51]. The experiment is implemented in MAT-
LAB environment of MacBook Pro with 3.1 GHz, Intel Core
i5, and 8 GB. All algorithms run until the convergence.

The quantitative results are recorded in Table III, where
the misclassification ratio (MCR), PSNR, and mean squared
error (MSE) are utilized to evaluate the corrupted original
image with noise, the rand index (RI), variation of informa-
tion (VI), and global consistency error (GCE) are utilized
to evaluate real image. Additionally, values in red are the
best while the ones in blue are the second best results. The
following will be discussed in two parts.

1) Simple Rail Samples: For smooth rail C1 with reflection
inequality, K -means (MCR = 71.84%, Time = 0.43),
GMM (MCR = 53.46%, Time = 0.32), and SVFMM
(MCR = 46.62%, Time = 80.31) present noisy diffu-
sion, indicating that these algorithms are very sensi-
tive to strong light so severe misclassification occurs.
In comparison, MRF-based mixed model SIMF (MCR =
10.31%, Time = 163.25), MEANF (MCR = 14.18%,
Time = 121.80), and Student-T (MCR = 2.56%,
Time = 15.36) can suppress most noise. Moreover,
the proposed FRGMM (MCR = 2.00%, Time = 0.81)
performs well with little noise or false segmenta-
tion. For smooth rail C2 with the Gaussian noise
and reflection inequality, K -means (MCR = 69.51%,
Time = 0.31), GMM (MCR = 60.25%, Time = 0.12),
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TABLE III

QUANTITATIVE COMPARISON OF DIFFERENT MODELS ON VARIOUS SAMPLES

SVFMM (MCR = 55.66%, Time = 117.14), SIMF
(MCR = 29.24%, Time = 108.26), MEANF (MCR =
35.67%, Time = 97.72), and Student-T (MCR =
61.16%, Time = 9.28) present noisy diffusion, indicat-
ing that these algorithms fail to suppress the Gaussian
noise so severe misclassification occurs. In comparison,
the proposed method (MCR = 8.44%, Time = 0.56) can
filter out external noise and defect edge is segmented
accurately and quickly, although one error in blue box
shown in Fig. 4(b9). To conclude, with the smallest
MCR, VI, and GCE and the biggest RI and PSNR,
FRGMM could obtain defect edge fast and accurate, and
is robust to reflection inequality and external noise.

2) Complex Rail Samples: For rough rail C3 with
rust, greasy dirt, and reflection inequality, K -means
(MCR = 70.50%, Time = 0.19), GMM (MCR =
72.00%, Time = 0.23), SVFMM (MCR = 68.78%,
Time = 116.49), SIMF (MCR = 66.56%), Time =
112.17), MEANF (MCR = 71.11%, Time = 96.84),
Student-T (MCR = 56.39%, Time = 16.49) perform
badly. In comparison, ours (MCR = 24.81%, Time =
0.47) gets rid of noise and segment edge rapidly and
precisely. Note that four errors remain in blue box of
Fig. 4(c9). For rough rail C4 with the Gaussian noise,
rust, greasy dirt, and reflection inequality, K -means

(MCR = 67.58%, Time = 0.28), GMM (MCR =
60.74%, Time = 0.34), SVFMM (MCR = 46.87%,
Time = 131.28), Student-T (MCR = 53.96%, Time =
13.48) present severe noisy diffusion. SIMF (MCR =
32.32%, Time = 97.54) and MEANF (MCR = 31.14%,
Time = 148.48) present severe false segmentation.
In comparison, the proposed FRGMM (MCR = 11.70%,
Time = 0.59) gets rid of the Gaussian noise and segment
defect edge accurately and quickly. Note that three
errors remain in blue box of Fig. 4(d9). For rough rail
C5 with salt pepper noise, rust, greasy dirt, and reflec-
tion inequality, K -means (MCR = 70.16%, Time =
0.22), GMM (MCR = 63.15%, Time = 0.18), SVFMM
(MCR = 53.92%, Time = 140.65), SIMF (MCR =
67.46%, Time = 113.48), MEANF (MCR = 64.13%),
Time = 152.73), Student-T (MCR = 52.71%, Time =
42.51) present noisy diffusion and false segmentation.
In comparison, our method (MCR = 17.88%, Time =
0.40) gets rid of salt pepper noise and segment the
edge rapidly and precisely. Note that two errors in
blue box of Fig. 4(e9) for the reason of rust and
greasy dirt. For rough rail C6 with weak illumination,
and rust and greasy dirt, K -means (MCR = 73.44%,
Time = 0.51), GMM (MCR = 67.61%, Time = 0.44),
SVFMM (MCR = 52.96%, Time = 128.03), SIMF
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(MCR = 59.08%, Time = 124.16), MEANF (MCR =
45.18%, Time = 142.51) perform badly for the reason
of low contrast. However, ours (MCR = 7.60%, Time =
0.76) segments the defect edge rapidly and accurately.
Note that one error remains in blue box of Fig. 4(f9).

To conclude, with the smallest MCR, VI, and GCE and
the biggest RI and PSNR, FRGMM could obtain defect edge
fast and accurate, and is robust to reflection inequality, vari-
ous external noise, and weak illumination. However, besides
real defects, many errors still appear in the results, showing
FRGMM is not robust environmentally and it can only achieve
a presegmentation on complex and diverse rail image.

B. Objective Location by Faster RCNN

Section IV-A2 illustrates that FRGMM is not widely effec-
tive, especially for complex rail surface like C3, C4, C5, and
C6, where many errors and noisy diffusion frequently occur,
although the defect edge is segmented accurately. To solve this
problem, a deep multimodel system is proposed with a parallel
structure, i.e., FRGMM generates the segmentation proposal
while Faster RCNN carries out the objective location, then the
joint hit area refers to real defect.

To make Faster RCNN equipped with good capacity,
the performance with different training steps and different
learning rates will be discussed below. The model is trained
on Tensorflow with Ubuntu 16.04, Intel Xeon 24 core CPU,
two GTX Titan xp GPU and 64-GB memory.

1) Test on Training Step: In this experiment, we design
12-step scales in the process of model training, with a learning
rate of 0.001, a dropout rate of 0.98, and batch size of 128.
To detect the surface defects on complex and diverse scenes,
the train set contains rail samples C1–C6, which accounts
for 70% of the whole data set, and the validation set takes
up 20%. Results show that at 4k (L1) step, Faster RCNN
outputs the mean prediction probability of only 0.4287 and
mean recognition accuracy of only 0.5195. As step goes up,
the probability and accuracy are gradually increasing. At 12k
(L9) step, Faster RCNN predicts the maximum probability
of 0.8120 and maximum accuracy of 0.9524. When train-
ing step continues to 20k (L12), mean probability drops to
0.4928 and accuracy is only 0.4083. In addition, single-graph
inference time is between 2.1 and 2.5 ms, showing that defect
detection is real time.

Specifically, a box plot of prediction probability is drawn
in Fig. 5 to search for the best training step. At 4k–7k
(L1–L4) step, a very small median and very long rectangle
with few outliers demonstrate that model outputs a large num-
ber of estimates with small prediction probability, that is not
accurate and stable. During 8k–10k (L5–L7) step, the median
is a bit large while the rectangle is still long with some outliers
at nearly zero, indicating that the model could only output
a small number of estimates with large probability. During
11k–13k (L8–L10) step, the rectangle is very short and the
median is very large; however, the model performs unsteadily
with many outliers. At 12k (L9) step, the rectangle is the
shortest and median is the largest, although for some outliers,
the extreme outlier is much higher than all the lower quartiles

Fig. 5. Box plot of prediction probability at training step. L1–L10 refers to
training steps, namely, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k, 12k, 13k, 15k, and
20k.

Fig. 6. Box plot of prediction probability with learning rate. R1–R10 refers
to learning rates, namely 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8,
10−9, and 10−10.

by steps of 4k, 5k, 6k, and 7k. Taking a close look, only two
outliers of not less than 0.50 probability show that the model
performs well with large prediction probability in most cases.
At 15k and 20k (L11, L12) step, model gradually deteriorates.

2) Test on Learning Rate: In next experiment, we design
ten learning rates in the process of model training, with the
step of 12k (L9), a dropout rate of 0.98, and batch size of 128.
To detect the surface defects on complex and diverse scenes,
the train set contains rail samples C1–C6, which accounts for
70% of the whole data set, and the validation set takes up
20%. The results show that with a learning rate greater than
10−2 (R2), the mean prediction probability and recognition
accuracy gradually increase as it falls. At 10−3 (R3) rate,
Faster RCNN outputs a maximum probability of 0.9146 and
a maximum accuracy of 0.9989. When the rate ranges from
10−4 to 10−6 (R4–R5), over 0.70 probability and about
0.93 accuracy demonstrate that the model is stable with any
variation of learning rate. In addition, the performance grows
worse significantly during 10−7 − 10−10 (R7–R10).

Specifically, a box plot of prediction probability is drawn
in Fig. 6 to search for the best learning rate. During
10−1 − 10−2 (R1–R2) rate, a very large median and very long
rectangle with some outliers demonstrate that model could
predict several good estimates while it is unstable. With 10−3

(R3) rate, the rectangle is very short and the median is the
largest. Taking a close look, there are only three extreme
outliers higher than both the lower quartiles by rates of 10−1
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Fig. 7. Results of different methods on various rail samples
(a1)–(a9) for C1, (b1)–(b9) for C2, (c1)–(c9) for C3, (d1)–(d9) for C4,
(e1)–(e9) for C5, and (f1)–(f9) for C6, horizontally, and (a1)–(f1)
original image, (a2)–(f2) GT, (a3)–(f3) Previous, (a4)–(f4) FCN-32s,
(a5)–(f5) FCN-8s, (a6)–(f6) SegNet, (a7)–(f7) SegNet + CRF,
(a8)–(f8) YOLO + FRGMM, (a9)–(f9) proposed system, vertically.
Red box: real defect. Blue box: false segmentation.

and 10−2, indicating that the model performs well in most
cases. When 10−4 − 10−10 (R4–R10) rate, median goes down
and rectangle becomes longer with a large number of outliers,
showing that model gradually deteriorates.

To conclude, Faster RCNN performs well with a training
step of 12k (L9) and learning rate of 10−3 (R3).

C. Multimodel Parallel System

1) Sample-Based Evaluation: The experiments above have
separately discussed two modules of our system, namely,
the segmentation proposal and objective location. Next,
the performance of the overall system will be taken into
account. Fig. 7 shows the results of different methods on
various rail samples. Note that rail surfaces C1 and C2 belong
to simple scenes, while C3–C6 belong to complex scenes,
which is a concern of this study.

An important consideration is that advanced semantic seg-
mentation methods are used for comparison, which is divided
into type I, II, and III, namely, probability graph model
(PGM)-based method, pure CNN-based method, and com-
bined method. For type I, our previous work is utilized
as PGM-based method. For type II, two fully convolutional
network (FCN)-based methods [52] FCN-32s, FCN-8s, and
an Encoder–Decoder method SegNet [53] are utilized as pure
CNN-based methods. For type III, SegNet with conditional
random field (CRF) algorithm [54], our method and its variant
YOLO + [55] FRGMM are utilized as combined methods.
In addition, CNN train and test are carried on Caffe with

Ubuntu 16.04, Intel Xeon 24 core CPU, two GTX Titan xp
GPU and 64-GB memory. Other tests are implemented in
MATLAB of MacBook Pro with 3.1 GHz, Intel Core i5, and
8 GB. All algorithms run until the convergence.

The quantitative results are recorded in Table IV, where error
positive (EP), precision (Pr), and recall (Rc) are utilized to
evaluate the pixelwise accuracy, Dice and Jaccard (Jacc) are
utilized to evaluate the edgewise accuracy, conformity (Confm)
is a coefficient of consistency, inference time (Infer) also gives
the running time of YOLO and Faster RCNN in brackets,
probability (Prob) is for predicted bounding box, and mem-
ory (Memo) is the size of model on disk. Additionally, values
in red are the best while the ones in blue are the second best
results. The following will be discussed in two parts.

1) PGM-Based Method: It is random for previous work.
In general, it performs well on the simple rail with
robust to noise and strong light. Although defect edge is
obtained accurately for complex rail, it is very sensitive
to salt pepper noise, rust, greasy dirt, and weak illu-
mination, making many errors in global segmentation
proposal. Two exceptions are C1 (Dice = 72.57%,
false positive (FP) = 40.65%, Infer = 6300 ms) and
C6 (Dice = 96.13%, FP = 37.96%, Infer = 5950 ms).
In addition, the step-by-step image preprocessing is
time-consuming, which is ROI extraction and curvature
filter.

2) CNN-Based Method: FCN-32s, FCN-8s, and SegNet
learn the deep convolution features on complex images
and then rail defects are correctly classified. In precision,
SegNet is slightly better than FCN-8s followed by
FCN-32s. However, CNN fails to take into account the
spatial information between neighboring pixels, so that
results are much rough, fuzzy, and smooth for the
lack of spatial consistency. For instance, many errors
occur by FCN-32s (Dice = 64.50%, FP = 58.50%,
Infer = 25.6 ms), FCN-8s (Dice = 71.13%,
FP = 53.46%, Infer = 120.3 ms), SegNet (Dice =
75.30%, FP = 49.41%, Infer = 48.7 ms) on
complex rail C5, showing CNN-based methods
are sensitive to salt pepper noise. In addition, the deep
learning framework brings high speed but large cost
(Memo = 519, 538, 106 MB, respectively).

3) Combined Method: CNN and PGM are well incorpo-
rated into method III, where CNN extracts deep features
to make it robust to complex and diverse rail scene, and
PGM considers spatial information between neighboring
pixels to obtain defect edge with high precision. They
perform differently on rail samples.

For instance, SegNet + CRF (Dice = 82.96%,
FP = 7.41%, Infer = 2450 ms) oversegments defects
on sample C3, making the edge much noisy and unsmooth.
Also, the CRF algorithm optimizes parameter too slowly
to converge. YOLO + FRGMM (Dice = 72.09%, FP =
42.24%, Infer = 530(1.0) ms, Prob = 86.62%) applies the
detection strategy of Ours to obtain defect accurately, which
will be discussed in Section V. However, lower probability
of bounding box balances the advantage of high speed,
i.e., YOLO could predict rust and tiny defects.
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TABLE IV

QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON VARIOUS SAMPLES

In comparison, ours (Dice = 92.50%, FP = 92.50%,
Infer = 530(1.0) ms, Prob = 94.70%) proposes a new
smoothing prior to incorporate spatial information between
neighboring pixels into MRF-GMM, thus the M-step of EM
algorithm can be directly used to prior distribution. Also,
the mixture model satisfies the constraint (20), making it not
over-smooth the edge. In addition, Faster RCNN can output
high prediction probability fast and steadily.

To sum up, the combined methods are generally supe-
rior to pure CNN-based methods followed by PGM-based
method. Our system (mDice = 95.18%, mJacc = 91.02%,
mPr = 96.74%, mRc = 94.13%, mInfer = 485 ms, mProb =
96.32%, Memo = 452 MB) is very accurate, robust for various
rail scenes, and fast with reasonable model cost.

Fig. 8 evaluates the accuracy in view of pixel classification
and edge overlap. It can be seen that: 1) generally, two indexes
maintain the same trend, although mAP of YOLO + FRGMM
is over 90% and Jacc is below 40% in C6, and mAP of SegNet
+ CRF is over 90% and Jacc is only 70% in C3; 2) ours
ranks top one steadily with mAP and Jacc over 90%; 3) CNN-
based methods are moderate with two indexes around 60% and
50%; and 4) previous and SegNet + CRF are unstable, with
exception in C1, and errors in C3, C4, C5, C6 caused by rust,
external noise, and weak illumination.

2) Data Set-Based Evaluation: Fig. 9 uses the whole test set
to evaluate the performance of different methods. Note that it is

Fig. 8. Accuracy of different methods on various rail samples. (a) Pixelwise
accuracy. (b) Edgewise accuracy.

drawn by Curve Fitting Tool in MATLAB and data here also
include samples from other data sets [21], [25], [38]. It can
be seen that: 1) for all types of rail surface, the multimodel
system proposed is outstanding and stable. For instance, once
only 10% of defects are detected (Recall = 10%) in data
set C3, ours (Precision = 98%) is 10 times better than
YOLO (Precision = 80%), and 20 times better than Previous
(Precision = 60%), and 30 times better than CNN-based
method (Precision = 40–60%); 2) CNN-based methods are
also steady but lose local information on defect edge, making
a moderate accuracy from 50% to 70% roughly; 3) several
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TABLE V

STATISTIC AND COMPARISON OF DCNN-BASED RAILWAY FAILURE DIAGNOSIS METHODS

Fig. 9. Performance of different methods on various data sets. (a) Rail data
set C1. (b) Rail data set C2. (c) Rail data set C3. (d) Rail data set C4. (e) Rail
data set C5. (f) Rail data set C6.

“divings” occur in data set C6, indicating Previous, SegNet +
CRF, and YOLO + FRGMM perform badly. To conclude, our
system has combined the advantage of PGM and CNN, with
high precision and environmental robustness.

3) Further Comparison With Other Studies: Table V
presents recently published research studies where DCNN is
successfully applied for railway failure diagnosis. Note that
those working on rail surface defect detection are marked
in bold, and remarkable results are marked in red. “N/A”
means there is no record in the original paper. Quantitative

Fig. 10. Type of defects inspected with our system. (a) Light squat.
(b) Moderate squat. (c) Severe squat. (d) Spalling. (e) Joint.

indexes “Accuracy” and “Speed” are in a broad sense for the
reason that the experimental condition, subject and evaluation
criteria are quite different in each research. For instance,
the speed of [26] is extremely fast because three DCNNs are
cascaded for the target location task, which differs from the
semantic segmentation task in this paper. In addition, various
data sets are utilized in [30] and more interest is grown in
classification challenge in [25], although all of us work for
rail steels. An important consideration is that direct numerical
comparison is not the genuine purpose of Table V, as various
subjects, objectives, and conditions would not support this.
Instead, the authors wish to show that proposed DM-RIS
with 96.74% accuracy and 0.485 s/frame speed is fairly
promising and competent. In addition, the proposed system can
effectively detect various types of defects as shown in Fig. 10.

V. DISCUSSION

Various frameworks lead to diverse detection strategies and
results. For instance, in a cascaded architecture, front-end
Faster RCNN predicts a bounding box and then FRGMM
performs on the local image within it, which is a step-by-step
strategy. Instead, in the proposed DM-RIS, the global image
is utilized by FRGMM, and meanwhile, an estimation is made
by Faster RCNN, which is an end-to-end parallel strategy.
Furthermore, some representative results are shown as follows.

A. Robustness Comparison

Fig. 11 provides results as a wrong location (FP) and a
missing location (true negative) occur in Faster RCNN. It can
be seen in Fig. 11(a1) that DM-RIS not only segments the
rail defect effectively but also eliminates the rusty background
robustly, due to that FRGMM has filtered out most noise
in such a parallel architecture. When a missing situation
occurs in Fig. 11(b1), the center of bounding box falls right
within segmentation proposal so that complete defect is still
hit, although an incomplete estimation is made in the path
of objective location. To conclude, when one model fails,
the whole system remains robust in DM-RIS.
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Fig. 11. Robustness comparison of two systems. (a) FP. (b) True negative.
(a1) and (b1) Detection process of proposed DM-RIS. (a2) and (b2) Detection
process of cascaded system. Red, blue, and green boxes: bounding boxes
predicted by Faster RCNN.

Fig. 12. Precision comparison of two systems. (a) Proposed DM-RIS.
(b) Cascaded system. (a1) and (b1) Bounding boxes (red) in Faster RCNN.
(a2) and (b2) zoomed-in view of the yellow boxes in (a1) and (b1). (a3)
and (b3) Final results. Blue grid is FRGMM’s window. Curves are vertical
projection of global image and bounding box image, respectively.

B. Precision Comparison

In proposed DM-RIS, a 5 × 5 window of FRGMM per-
forms through the whole global image, including defect edge
and noise area, so that the surface defect is segmented with
high precision and noise is filtered out. More details are shown
in Fig. 12(a1)–(a3). In addition, the curve presents a narrow
and high crest in columns [60,120], indicating a high contrast
between defect and background.

In a cascaded system, the 5 × 5 window is restricted
within the bounding box so that the local information on
the edge is lost, making a rough, fuzzy, and noisy result.
More details are shown in Fig. 12(b1)–(b3). In addition,
the curve presents quite low and stable gray values in [20,110],
indicating a very low contrast between defect and background,
because defect almost has taken up the entire local image.

VI. CONCLUSION

In this paper, DM-RIS is proposed for complex and diverse
rail surface where FRGMM generates the segmentation pro-
posal and Faster RCNN carries out the objective location.
In such a system, the two algorithms are well taken advantage

of: 1) in order to obtain defect edge accurately, robustly,
and fastly, we propose a new way to incorporate spatial
information between neighboring pixels into the MRF-based
GMM, so that the M-step of EM algorithm could be directly
applied to prior distribution for the maximization of log-
likelihood function; 2) to make it pervasive and robust environ-
mentally, various rail scenes like weak illumination, inequality
reflection, external noise, rust, and greasy dirt are fed into
Faster RCNN so that our system meets different light, angle,
background, and acquisition equipment. In the experiment,
the proposed FRGMM achieves higher PSNR and precision
(91.01%) and is 100–1000 times faster than other mixture
models, the trained Faster RCNN achieves mean recognition
accuracy (99.89%) and inference time (2.35 ms), and multi-
model system performs well with overlap (95.18%), precision
(96.74%), recall (94.13%), and speed (0.485 s/frame), which
is, respectively, 7.94%, 2.13%, and 0.555 s/frame superior to
previous work. The results demonstrate that RIS is highly
effective and efficient in railway defects detection.
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