
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Composite-Learning-Based Adaptive Neural Control
for Dual-Arm Robots With Relative Motion

Yiming Jiang , Member, IEEE, Yaonan Wang , Zhiqiang Miao , Member, IEEE, Jing Na , Member, IEEE,

Zhijia Zhao , Member, IEEE, and Chenguang Yang , Senior Member, IEEE

Abstract— This article presents an adaptive control method
for dual-arm robot systems to perform bimanual tasks under
modeling uncertainties. Different from the traditional symmetric
bimanual robot control, we study the dual-arm robot control
with relative motions between robotic arms and a grasped object.
The robot system is first divided into two subsystems: a settled
manipulator system and a tool-used manipulator system. Then,
a command filtered control technique is developed for trajectory
tracking and contact force control. In addition, to deal with
the inevitable dynamic uncertainties, a radial basis function
neural network (RBFNN) is employed for the robot, with a novel
composite learning law to update the NN weights. The composite
learning is mainly based on an integration of the historic data
of NN regression such that information of the estimate error
can be utilized to improve the convergence. Moreover, a partial
persistent excitation condition is employed to ensure estimation
convergence. The stability analysis is performed by using the
Lyapunov theorem. Numerical simulation results demonstrate the
validity of the proposed control and learning algorithm.

Index Terms— Adaptive robot control, bimanual robot,
composite learning, neural network, relative motion.

I. INTRODUCTION

RECENTLY, coordination control of dual-arm robots
has received increasing attention due to its superiority

compared with traditional single-arm robot systems, includ-
ing stronger payload capability, larger workspace, and more
flexibility. Thus, the dual-arm robots have been involved
in many high technology applications, such as intelligent
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assembly, out-space repairing, and elderly people assistance
[1]–[3]. However, controlling the dual-arm robots is chal-
lenging due to the increase of complexity in motion control
and path planning. Therefore, advanced control technologies
have been extensively studied for dual-arm robots in past
decades [4]–[11].

An adaptive decentralized control scheme was proposed to
address the object handling problem of a cooperative robot,
where an implicit force control scheme was employed to
simultaneously regulate the force and position [9]. In [10],
a decentralized control structure for multiple mobile manipula-
tors was developed, where the internal forces were constrained
by employing an augmented object model for the multiple
systems with a virtual linkage. In [11], the loading problem for
multiple manipulators was addressed by analyzing the grasp
space of the robot. Note that the abovementioned controllers
were developed under the assumption that the object is firmly
held by the robotic arms such that no relative motion occurred
between the arms and the objects. However, in practical appli-
cations, such as polishing, grinding, and welding, the robot
end-effectors need to operate along the object’s surface, where
sliding movements usually happened between the robotic arm
and the object [12]–[14].

In this respect, the coordination control of dual-arm robots
with relative motion deserves further investigation. The rel-
ative motion is also known as the asymmetric bimanual
task. In [15], a relative impedance controller was devel-
oped by using a relative Jacobian method such that the
dual-arm system can be treated as a single-arm robotic system.
In [16], a brain-actuated control architecture was proposed
for dual-arm robots to perform the asymmetric bimanual
task, where electroencephalogram signals and visual stimu-
lation were employed to send control command through a
brain–machine interface. In these works, however, the con-
trollers were designed under the assumption that the robot
dynamics are fully available, while the stability analysis of
the contact force between the robotic arm and the object was
not given.

The dynamic model of the robot system is of great impor-
tance in the controller design [17]–[22], but it is often unavail-
able in practice. For example, in carrying tasks, the dynamics
of the grasped object is hard to obtain in advance. Without
a precise dynamics model, the model-based control method
became invalid and may cause degeneration of the control
performance. Hence, advanced control strategies have been
presented to compensate for the model uncertainties. Neural
network (NN) is well known by its advantages in alleviating
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modeling difficulties of nonlinear systems due to the powerful
approximation ability [23]. Thus, NN control synthesizes
have been widely implemented in developing controllers for
nonlinear robotic systems [24]–[32].

A fuzzy neural network control approach was presented for
pure-feedback stochastic systems by using a semi-Nussbaum
function [33]. In [34], an adaptive NN control strategy was
proposed for an uncertain robot to ensure the state not
to violate the prescribed constraints. Recently, a sensorless
admittance controller was designed to solve the unknown
environments’ interaction by using the NN technique [35].
Significant works have been done in [36]–[38] to make a
complex topic understandable about modeling and control
of flapping-wing flying robots to the average reader. While
the NN controllers have been successfully developed in the
abovementioned work, a major limitation for existing adaptive
NN control schemes lies in that only convergence of the
tracking errors can be achieved, instead of the convergence
of NN weights to their ideal values. Without the convergence
of NN weights, the NN compensation can be hardly accom-
plished, and the system performance may be degraded and,
eventually, became unstable. In this respect, developing a novel
control scheme with guaranteed NN convergence is of great
significance.

In our recent work [39], a filtered operation was presented
to control the robotic arm with finite-time convergence under
a linear-in-parameter (LIP) robotic dynamic model. Neverthe-
less, the guaranteed convergence of the NN weights is more
difficult. It is well known that the persistent excitation (PE)
condition is important to guarantee the estimation convergence
[40]. However, in practice, it is very stringent to ensure the PE
condition of neural networks due to the sparse characteristics
of the NN regressor vector. Recent research of neural networks
in [41] presented a partial persistent excitation (PPE) condition
instead of the traditional PE condition. It has been proven that,
for the radial basis function neural network (RBFNN) defined
in a regular lattice, neural nodes could be partially activated
for any recurrent NN inputs trajectory remained in this local
region [41]. In the subsequent work [42], this idea was
employed for the control design of nonlinear strict-feedback
systems to guarantee the system stability and accurate NN
approximation. However, the NN inputs still need to satisfy the
condition of recurrent trajectory, and a small input excitation
strength may lead to slow learning speed.

The work in [43] indicates that parameter convergence
can be improved if certain information of the estimation
error can be integrated into the adaptation. In [44], a novel
parameter estimation law was proposed for a robotic system
with unknown dynamics by using a sliding mode technique
and a finite-time estimator. In [45], the estimation error was
integrated into the adaptation scheme of a class of nonlinear
systems to achieve the convergence of NN weights. Motivated
by the abovementioned idea, in this article, we develop a com-
posite learning controller for the dual-arm robot to perform
bimanual relative motion tasks. To the best of our knowledge,
few studies have investigated the learning control in the frame
of the dual-arm robot systems subject to relative motion and
unknown dynamics. Moreover, different from the work in [46],

Fig. 1. Overlook of the two-robotic-arm coordination with relative motion.

a PPE condition is also introduced in the estimation scheme to
achieve a relaxation of the requirement of the PE condition. In
comparison to the method in [45], the estimation error of the
NN weights is properly expressed and employed to enhance
the approximation of the neural network.

The objective of this article is to develop a control
framework for dual-arm robot tracking control under rela-
tive motion. The main contributions of this article can be
summarized as follows.

1) A novel neural control framework is developed for
dual-arm robot systems to perform asymmetric bimanual
tasks with no prior knowledge of the dynamics.

2) A novel composite learning algorithm is designed for
NN weights adaptation such that information of the
estimate errors could be appropriately integrated into the
adaptation law to improve the estimation performance.

3) A partial persistent condition is introduced for the
adaptation of NN weights such that the requirement of
conventional PE condition can be greatly relaxed.

In the following sections, the system modeling and control
design procedures are detailed. Section II discusses the system
modeling of the dual-arm robot in addition to some preliminar-
ies. Section III presents the design of the composite learning
control algorithm by utilizing a command filtered backstep-
ping technique with stability analysis. Section IV demon-
strates the simulation results. A brief conclusion is given in
Section V.

II. SYSTEM DESCRIPTION

A. Kinematics Modeling

The system studied in this article is shown in Fig. 1,
where a rigid object is tightly caught by a settled manipulator
(SM), while a tool-used manipulator (TM) holds an implement
to follow a given trajectory on the surface of the object.
As depicted in Fig. 1, the world coordinate is described by
O XY Z . Besides, three coordinates are attached to the settled
manipulator end-effector (SME) (Os XsYs Zs), the tool-used
manipulator end-effector (TME) (Ot Xt Yt Zt ), and the grasped
object (Oo XoYo Zo), respectively. The SME carries an object to
track the desired trajectory during the manipulation task. The
TME follows a trajectory ρ(pto) = 0 defined on a manifold of
the object surface, and relative motion is, therefore, generated
between the object and robotic end-effector. Table I presents
some notations used in this article.

To facilitate the modeling procedure, the following assump-
tions are adopted.
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TABLE I

NOMENCLATURE OF THE COORDINATION SYSTEM

Assumption 1: The object is firmly caught by the
end-effector of the SM, and no sliding movement has occurred
between SME and the object.

Assumption 2: The TME is always in contact with the
object surface.

Assumption 3: The inverse kinematics of the dual-arm
robot are fully available, and singularity points are properly
avoided.

In terms of the notations in Table I, the kinematics of the
dual-arm coordination system can be described as follows [47]:

rt = ro + Ro(θo)rto (1)

rs = ro + Ro(θo)rso (2)

Rt = Ro(θo)Rto(θto) (3)

Rs = Ro(θo) (4)

where θo is the rotation angle of the object’s CoM, θto is the
rotation from the object’s CoM to the TME, and Ro(θo) ∈
R

lr ×lr and Rto(θto) ∈ R
lr ×lr are the rotation matrices of θo

and θto, respectively, with lr being the dimension of rotation.
Then, Rt and Rs represent the rotation matrices of the SME
and TME, respectively.

Taking the derivative of (1) with respect to time yields

ṙt = ṙo + Ro(θo)ṙto − E(Ro(θo)rto)φo (5)

ṙs = ṙo − E(Ro(θo)rso)φo (6)

φt = φo + Ro(θo)φto (7)

φs = φo (8)

and

E(a) =
⎡
⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ (9)

for any given vector a = [a1, a2, a3]T , where φo, φto, and φso

are the vectors of angular velocities. Note that, in the above
derivation, due to the factor that the workpiece is tightly caught
by the TME, φso = 0 and φ̇so = 0 are omitted in (5)–(8).

Equations (5)–(8) can be rewritten in a compact form as

vt = Dtvo + Rvvto (10)

vs = Dsvo (11)

where vt = [ṙ T
t φT

t ]T , vs = [ṙ T
s φT

s ]T , vo = [ṙ T
o φT

o ]T , vto =
[ṙ T

to φT
to]T , and

Rv =
�

Ro(θo) 0
0 Ro(θo)

�
(12)

Dt =
�

I −E(Ro(θo)rto)
0 I

�
(13)

Ds =
�

I −E(Ro(θo)rso)
0 I

�
(14)

with I being an unit matrix with proper dimension. Note that
the TME follows a reference trajectory ρ(pto) = 0 on the
rigid object surface, and the constraint force ft vertical to
object surface can be expressed as follows [48]:

ft = ηtξ (15)

ηt = Rv (∂ρ/∂pto)
T

||(∂ρ/∂pto)T || (16)

where ηt is a vector representing the direction of the con-
straint force and ξ is a Lagrange multiplier that denotes the
force magnitude. Then, through the transformation matrix Dt ,
the contact force applied on the object can be obtained as

fo = −DT
t ft = −DT

t ηtξ. (17)

B. Dynamics Modeling

In order to build the dynamic model of the dual-arm robot
system, we first build the dynamic model of the SME and the
TME, respectively. Remind in Assumption 1 that the object
is rigidly caught by the SME, and no motion is generated
between the SME and object. Hence, the object and the SME
can be treated as a lump dynamic system, and its dynamics is
obtained by using the Lagrange–Euler method as follows:

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + Gs(qs) = τs + J T
s (qs) fo (18)

where Ms is the inertia matrix of the arm-object system, Cs is
the Coriolis/centrifugal force matrix, Gs is the gravity vector,
τs is the torque of the joints, and Js is the Jacobian matrix.
On the other hand, the dynamics of TME can be described as
follows:

Mt (qt)q̈t + Ct (qt , q̇t )q̇t + Gt (qt) = τt + J T
t (qt) ft (19)

where Mt , Ct , and Gt are the matrices of inertia, Corio-
lis/centrifugal force, and the vector of the gravitational force,
respectively, τt is the joints torque of TM, ft is the contact
force defined in (15), and Jt is the corresponding Jacobian
matrix.

Combining the dynamics of robot systems (17)–(19), we can
obtain the robot dynamics of the dual-arm robot system as

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + J T (q)ηtξ (20)
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where

M(q) =
�

Ms(qs) 0
0 Mt (qt)

�

C(q, q̇) =
�

Cs(qs, q̇s) 0
0 Ct (qt , q̇t )

�

G(q) =
�

Gs(qs)
Gt (qt)

�
, J (t) =

�
Js(qs)
Jt (qt)

�
,

q=
�

qs

qt

�
, τ =

�
τs

τt

�
. (21)

Note that the dual-arm robot is constrained by a holonomic
kinematic constraints represented by (10) and (11); thus, some
degrees of freedom of the robotic system will be lost in the
movement. Let us select a set of n independent variables qc =
[qc1, qc2, . . . , qcn]T from the joints variable q = [qT

s , qT
t ]T ,

and q can be represented by a function of d(qc) as
q = d(qc). (22)

Differentiating (22) with respect to time yields
q̇ = N(qc)q̇c

q̈ = N(qc)q̈c + Ṅ (qc)q̇c (23)

where N(qc) = ∂q/∂qc with N being a full column rank
matrix.

Note that vto = R−1
v (vt − Dtvo) = RT

v (vt − Dtvo), and
vt = Jt (qt)q̇t and vo = Jo(qt)q̇o hold in terms of the
kinematics. Also, vto = RT

v Jc Ncq̇c can be derived from (22)
and (23). Since vto and ηt are orthogonal to each other,
we can obtain ηT

t vto = 0. From the above derivation, we can
derive ηT

t Jc Ncq̇c = 0. Since qc is a variable, we obtain that
NT (qc)J T

c (qc)ηt = 0.
The combination of (20), (22), and (23) yields

Mc(qc)q̈c + Cc(qc, q̇c)q̇c + Gc(qc) = τ + J T
c (qc)ηtξ (24)

where Mc(qc) = M(qc)N(qc), Cc(qc, q̇c) = M(qc)(Ṅ(qc) +
C(qc, q̇c)N(qc)), Gc = G(d(qc)), and Jc(qc) = J (d(qc)).

Several useful properties for the system (24) is given as
follows.

Property 1 [47]: The matrix M(qc) = NT Mc(qc) is a
bounded symmetric positive definite matrix.

Property 2 [47]: Define C(qc, q̇c) = NT Cc(qc, q̇c). Then,
the matrix Ṁ(qc) − 2C(qc, q̇c) is a skew-symmetric matrix
such that

νT (Ṁ − 2C)ν = 0 ∀ν ∈ R
n . (25)

Property 3 [48]: For the tool-use manipulator, the follow-
ing relationship is satisfied:

NT (qc)J T
c (qc)ηt = 0. (26)

It should be emphasized that (24) gives the constraint
dynamics of the dual-arm robot, where the last term on the
right-hand side represents the contact force applied on the
robotic joint. To address the effect of the contact force, let
us consider a controller τc as follows:

τc = τd − Jc(qc)ηt

�
ξd + kξ

	 t

0
eξ dτ



(27)

where τd is a feedback control term to be designed later, and
eξ = ξ −ξd . Note that, in (27), τd is designed for the trajectory

following, while the later term is developed to deal with the
contact force between the TME and the grasped object.

Substituting (27) into (24), we have

Mc(qc)q̈c + Cc(qc, q̇c)q̇c + Gc(qc)

= τd − Jc(qc)ηt

�
ξd + kξ

	 t

0
eξ dτ



+ J T

c (qc)ηtξ

= τd − Jc(qc)ηt

�
eξ + kξ

	 t

0
eξ dτ



. (28)

Premultiplying on both sides of (28) with NT and
considering NT (qc)J T

c (qc)ηt = 0 in Property 3, we have

M(qc)q̈c + C(qc, q̇c)q̇c + G(qc) = NT τd (29)

where M(qc) with C(qc, q̇c) are defined in Properties 1 and 2,
respectively, and G(qc) = NT Gc(qc).

Remark 1: Equation (29) represents a subspace of the robot
dynamics, which is orthogonal to the contact constraints. That
is, (29) gives a description of the error dynamics of the
robot tracking, while (28) represents the error dynamics of the
contact force eξ . Now, the dynamic behavior of the dual-arm
robot system with relative motion and contact constraint is
available for the controller design.

C. Preliminaries
A number of useful definitions and lemmas used in this

article are introduced as follows.
Definition 1 (PE [44]): A variable or vector ϕ is termed

PE if there exist positive constants ta and � such that� t
t−ta

ϕT (τ )ϕ(τ )dτ ≥ �I ∀t ≥ 0.
Lemma 1 (RBFNN [49]): The RBFNN is of the capabil-

ity to approximate any given continuous function F(Z) =
[ f1(Z), f2(Z), . . . , fn(Z)]T ∈ R

n with

F(Z) = W ∗T S(x) + ε (30)

where W ∗ is the optimal NN weights, and S(x) =
[s1, s2, . . . , sl ]T ∈ R

l is the NN regressor vector with si being

si(||x − μi ||) = exp

�−(x − μi)
T (x − μi)

ϑ2
i

�

where μi(i = 1, . . . , l) denote the centers of NN nodes. ε is
the NN approximation error.

Lemma 2 [49]: The regressor vectors of the RBFNN
satisfy that ||S(x)|| ≤ S̄ for any given constant vector x , where
S̄ is a positive constant denoting the boundary of S.

Lemma 3 (Spatially Localized Approximation [41]): For
any given trajectory, a function can be approximated by the
RBFNN with a limited number of NN nodes located in a local
region along x(t) such that

f (x) = ST
ζ W ∗

ζ + εζ (31)

where W ∗
ζ = [w∗

l1
, w∗

l2
, . . . , w∗

lNζ
] and Sζ = [sl1 , sl2 , . . . , slNζ

]T

are the elements from W ∗ and S, receptively, satisfying that
sli > δl , Nζ ≤ N , where δl is small positive constant, and εζ

is the corresponding NN approximate error.
Lemma 4 (Partial PE Condition [41]): Consider the

RBFNN whose centers are placed on a regular lattice, and we
can obtain that the regressor Sζ is PPE for any given recurrent
trajectory x(t).
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Fig. 2. Overall framework of the proposed bimanual control system.

Remark 2: For most existing estimation schemes, the PE
condition is required for the convergence of estimation.
However, the PE condition in Definition 1 is very stringent
for neural networks due to the requirement of excitation of
S for all time. The PPE condition presented in Lemma 4
indicates that only partial regressors Sζ need to be activated.
Thus, the required condition is claimed to be relaxed. This
condition has been applied in a wide range of implementations
of neural control, such as robotics and unmanned underwater
vehicles [50].

III. CONTROLLER DESIGN

Revisiting the objective of the controller design for the
dual-arm robot system, we aim to control the TME to follow
a reference path on the surface of the grasped object while
maintaining the contact force at the desired level. Defining pod

as the desired trajectory of the object, ptod is the desired path
for the TM, while ξd is the desired constraint force. To facil-
itate the theoretical analysis, the Cartesian space variables,
pod and ptod, are transformed to desired joint variables qcd

by using the inverse kinematics. Then, the control objective
can be reformulated to follow the reference trajectory qcd in
the joint space. The proposed control system is depicted as
shown in Fig. 2.

A. Command Filtered Control
Let x1 = qc, x2 = q̇c, and the robotic dynamics in (29) can

be rewritten as
ẋ1 = x2

ẋ2 = M(qc)
−1

�
NT τd − C(qc, q̇c)x2 − G(qc)



. (32)

Then, we define the tracking errors as follows:
e = x1 − x1d

z = x2 − αc (33)

where x1d = qcd , and αc is the filtered virtual control term to
be specified later.

The controller is designed with the following steps. Con-
sider a Lyapunov candidate V1 with respect to the tracking
error e as follows:

V1 = 1

2
eT e. (34)

Taking time derivative of (34), we have

V̇1 = eT ė. (35)

Substituting (33) into (35) yields

V̇1 = eT (ẋ1 − ẋ1d). (36)

For the conventional backstepping technique, a virtual con-
trol term α = ẋ1d − �e is designed with � =
diag[k11, k12, . . . , k1n] being a positive definite matrix. Here,
we employ a filtered virtual controller αc to replace α as�

v̇1 = v2

v̇2 = −2κσv2 + σ 2(α − v1)
(37)

where v1 = αc, v2 = α̇c with v1(0) = α(0), v2(0) = 0, σ is
a positive constant denoting the natural frequency, and κ is a
positive damping ratio.

Lemma 5: [43] For the command filtered defined in (37),
there exists a small positive constant dα such that |α̃| ≤ dα

with a sufficiently large frequency σ .
Remark 3: Note that the filtered error α̃ = αc − α is

bounded in terms of Lemma 5. The command filter here can
be used to simplify the process of calculating the command
derivative signals.

According to the definition of αc, (36) can be rewritten as
follows:

V̇1 = eT (z − �e + α̃). (38)

Considering the system state z, let us define a Lyapunov
candidate V2 as follows:

V2 = 1

2
zTMz. (39)

The time derivative of (39) gives

V̇2 = zTMż + 1

2
zTṀz. (40)

Combining (32) and (33) and substituting them into (40),
we can obtain that

V̇2 = zT
�

NT τd − C(qc, q̇c)x2 − G(qc)



−1

2
zTMα̇c + 1

2
zTṀz

= zT
�

NT τd − Mα̇c − C(qc, q̇c)α
c − G(qc)



−zTCz + 1

2
zTṀz. (41)
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Note that the property in (25) holds, and (41) can be
rewritten as

V̇2 = zT
�

NT τd + f (α̇c, αc, q̇c, qc)



(42)

where f (xc) = −Mα̇c − C(qc, q̇c)α
c − G(qc) and xc =

[α̇c, αc, q̇c, qc].

B. Composite Learning

It should be emphasized that the robot dynamics f (xc)
is strongly nonlinear and often not available in prac-
tice. Therefore, an RBFNN is introduced to address the
nonlinearity. The RBFNN is constructed to approximate f (xc)
as

f (xc) = Ŵ T S (43)

where S is a vector of the radial basis function, and Ŵ is the
estimation of W ∗.

To improve the learning performance of the neural weights,
the following auxiliary term is introduced to design the
learning law:

P =
	 t

0
e−γ (t−τ)S(xc(τ ))S(xc(τ ))T dτ

Q =
	 t

0
e−γ (t−τ)S(xc(τ ))

�
S(xc(τ ))T W ∗ + ε



dτ (44)

where γ is a forgetting constant.
Remark 4: e−γ (t−τ) in (44) is introduced to remain the

boundedness of the auxiliary terms: P and Q. This is because
noises and external disturbances may be accumulated over
time in the integration, which leads to the oversize of P , Q.
The forgetting factor γ can help to maintain the amplitude of
P and Q by reducing the influence of the past time variables
and, thus, help to improve the convergence speed.

Then, let us define a novel predication error as

� = Q(t) − P(t)Ŵ . (45)

Note that Q can be calculated from (32) and (43) as
Q = � t

0 e−γ (t−τ)S(ST W ∗ + ε)dτ = � t
0 e−γ (t−τ)Sτ �dτ ,

where τ � = NT τd .
The combination of (44) and (45) yields

� = P(t)W̃ + εa (46)

where εa = � t
0 e−γ (t−τ)S(xc(τ ))ε(τ )dτ and W̃ = W ∗ − Ŵ .

According to Lemma 3, f (xc) can be expressed by partial
NN regression vector as

f (xc) = ST
ζ W ∗

ζ + εζ (47)

where εζ satisfies that |εζ | < dεζ
, and dεζ

∈ R
+ represents

the bound of εζ . Here, a projection �(·) is defined to choose
the excitation elements such that Sζ = �(S). Then, P can be
reformulated by Pζ = � t

0 e−γ (t−τ)Sζ (τ )ST
ζ (τ )dτ , and we can

rewrite (46) by �ζ = Pζ W̃ζ + εaζ .
The neural weight adaptation law is designed as follows:

˙̂Wζ = β�(Sζ (xc)z
T NT + λω�ζ ) (48)

where β and λω are the positive gain matrices, and � is a
projection operator defined as

�(u)

=

⎧⎪⎨
⎪⎩

u, if ||Ŵ ||≤σω or (||Ŵ ||=σω & Ŵ T u ≤0)

u − Ŵ T Ŵ

||Ŵ || u, ohterwise

(49)

where σω is a positive constant representing the boundary of
NN weights.

Remark 5: The projection operator � is defined for the
adaptation of Ŵ such that Ŵ is kept as its original form if Ŵ is
inside the compact set �σω or on the boundary but going into
the compact set. Otherwise, Ŵ is projected to the boundary
of �σω.

Then, the controller can be designed as

τd = (NT )−1(−K2z − e) − Ŵ T
ζ Sζ (50)

where K2 = diag{k21, k22, . . . , k2n} is a positive definite gain
matrix.

C. Stability Analysis

Theorem 1: Consider the closed-loop dual-arm robot
dynamic system described by (29), using the control law (27)
and (50), and the adaptation law (48), under the assumption
that the PPE condition is satisfied; then, the following results
hold: 1) the tracking errors e and z of the system converge to
a small neighborhood containing the origin; 2) the estimation
errors W̃ξ converge to a small neighborhood containing the
origin; and 3) the error of the contact force eξ is bounded.

Proof: Let us consider a Lyapunov candidate V3 as follows:

V3 = 1

2β
W̃ζ

T
W̃ζ . (51)

Combining (34), (39), and (51), we can define V = V1 + V2 +
V3. Taking the derivative of V with respect to time yields

V̇ = V̇1 + V̇2 + V̇3. (52)

Then, substituting (38) and (42) into (52), we can obtain that

V̇ = eT (z − �e + α̃) + zT (NT τd + f (xc)) − 1

β
W̃ T

ζ
˙̂Wζ . (53)

Substituting the designed controller (50) to (53), we have

V̇ = eT (z − �e + α̃) + zT
�

− K2z−e



+zT f (xc) − zT NT Ŵ T
ζ Sζ − 1

β
W̃ T

ζ
˙̂Wζ

= −eT �e − zT K2 z + eT α̃

+ zT ( f (xc) − NT Ŵ T
ζ Sζ ) − 1

β
W̃ T

ζ
˙̂Wζ . (54)

Then, substituting the adaptation law (48) into (54) yields

V̇ = −eT �e − zT K2 z + eT α̃

+zT ( f (xc) − NT Ŵ T
ζ Sζ ) − 1

β
W̃ T

ζ
˙̂Wζ

= −eT �e − zT K2 z + eT α̃ + zT NT W̃ T
ζ Sζ

+zT εζ − W̃ T
ζ �(Sζ (Nz)T + λω�ζ ). (55)
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From the projection operation �(·) defined in (49), Ŵζ (t) is
remained in Ŵζ (t) ∈ �σω by choosing proper initial condition
Ŵζ (0) ∈ �σω. Since the initial condition is easy to guaran-
tee, we can obtain W̃ T

ζ Sζ (xc)(Nz)T − W̃ T
ζ �(Sζ (xc)(Nz)T +

λω�ζ ) ≤ −λωW̃ T
ζ �ζ .

Then, (55) can be rewritten as

V̇ ≤ −eT �e − zT K2 z + eT α̃ + zT εζ − λωW̃ T
ζ �ζ . (56)

Reminding the definition of � in (46), we can obtain that

V̇ ≤ −eT �e − zT K2 z + eT α̃ + zT εζ

−λωW̃ T
ζ (Pζ W̃ζ + εaζ )

≤ −eT �e − zT K2 z + eT α̃ − λωW̃ T
ζ Pζ W̃ζ

+zT εζ − λωW̃ T
ζ εaζ . (57)

Note that α̃ is bounded by |α̃| ≤ dα , and ε is bounded by
|ε| ≤ dε. Employing Young’s inequality −a2 + 2ab − b2 ≤ 0
here, we can obtain

V̇ ≤ −1

2
eT �e− 1

2
zT K2 z−λωW̃ T

ζ PW̃ζ +μ−λωW̃ T
ζ εaζ (58)

where μ = (dα)
2/(2 min(k1i )) + (dε)

2/(2 min(k2i )).
Then, according to the assumption that PPE condition is

guaranteed, we can obtain that Pζ is positive definite and
λ(Pζ ) ≥ σP I [51], where σP is a small constant satisfying
σP ≤ λmin(Pζ ), and I is an unit matrix with proper dimension.
Therefore, (58) can be rewritten as

V̇ ≤ −1

2
eT �e − 1

2
zT K2 z − λωσP W̃ T

ζ W̃ζ

+μ − λωW̃ T
ζ εaζ

≤ −1

2
eT �e − 1

2
zT K2 z − 1

2
λωσP W̃ T

ζ W̃ζ

+μ − λωW̃ T
ζ εaζ − 1

2
λωσP W̃ T

ζ W̃ζ

≤ −1

2
eT �e − 1

2
zT K2 z − 1

2
λωσP W̃ T

ζ W̃ζ + μ + � (59)

where

� = λω
||S̄dε||2

2σP

and again Young’s inequality

−1

2
λωσP (W T

ζ W̃ζ + 2
1

σP
W̃ T

ζ εaζ
) ≤ λω

||εaζ ||2
2σP

is employed with ||εaζ || ≤ ||S̄dεζ
||.

Comparing with the elements of V defined in (34), (39),
and (51), we can obtain that

V̇ ≤ −ϑv V + δ (60)

where ϑv = min{λmin(�), λmin(K2)/λmax(M), λωσP/β}, and
δ = μ + � .

Integrating on both sides of (60) to solve the differential
inequality equation yields

V (t) ≤ V (0)e−ϑv t + δ/ϑv . (61)

Therefore, we can derive that there exists a compact set
{� : V ≤ δ/ϑv} such that the states outside � could enter into

it and remain in � in the future time. In addition, the tracking
errors e, z, and W̃ζ converge to a small neighborhood around
zero, and the size of the compact set can be diminished by
increasing k1i , k2i , and λω.

Then, let us revisit the stability of contact force. Substituting
the error dynamics (50) into (28), we have

(NT )−1(−K2z−e + NT W̃ T S)= Jc(qc)ηt

�
eξ +kξ

	 t

0
eξ dτ



.

(62)

According to the results of Theorem 1, as z, e, W̃ , and ε
converge to a small neighborhood around zero and N and Jc

are also full column rank matrices, we can obtain

eξ + kξ

	 t

0
eξ dτ ≤ U (63)

where U = �(max{k2i}|σz|+ |σe|+ |σw|S̄ +|dε|), with σz , σe,
and σW̃ being the boundary of the compact set of the tracking
errors, and � = |λmax((NT Jc)

−1/ηt )| is a bounded parameter.
Since eξ is continuous and the inequality in (63) holds, we can
conclude that the error of the contact force eξ is bounded in
terms of the boundedness of U , while the magnitude of eξ can
be diminished through the increases of kξ and ηt .

This completes the proof.
Remark 6: Different from the traditional NN learning

algorithms, a leakage term λω�ζ is designed in (48). As dis-
cussed in Section III-B, �ζ can be described by a function of
the estimation error of the NN weights. Therefore, integrating
�ζ in the adaptation law will result in a quadratic term
λωW̃ T

ζ Pζ W̃ζ in the Lyapunov function (57). Thus, the esti-
mation error and the tracking error are claimed to be con-
verged simultaneously. In comparison to the widely used NN
adaptation algorithm in [31] and [41], the proposed composite
learning algorithm is clearly different by using the prediction
error for ensuring the convergence. More detailed illustrations
will be given in Section IV with numerical examples.

IV. SIMULATION

To verify the validity of the proposed bimanual control
algorithm, we employ a bimanual robot consists of a manip-
ulator with two revolute joints and an arm with one trans-
late joint, to rigidly grasp a rectangular object, as shown
in Fig. 3. The object coordinate frame X O OO YO is attached
to the object mass center Oo. The joint variables of the
SM and TM are set to qs = x and qt = [q1, q2], with
base displacements of b = 0.5 and a = 0.3. From Fig. 3,
we can derive the position vectors of the object coordinate
and the tool coordinate as po = [qs, b]T , pc = [l1 cos(q1) +
l2 cos(q1+q2)+a, l1 sin(q1)+l2 sin(q1+q2)]T . We assume that
the tool-used manipulator tracks a straight line on the object
as ρ(pto) = xto − yto = 0. The joint coordinate is chosen
to be d(q) = [qt1, qt2]T and qs(q) = l1(cos(q1) − sin(q1)) +
l2(cos(q1 + q2) − sin(q1 + q2)) + a.

Then, the kinematic relationship of the bimanual robot can
be derived by

Jt =
�−l1 sin(q1) − l2 sin(q1 + q2) − l2 sin(q1 + q2)

−l1 cos(q1) + l2 cos(q1 + q2) − l2 cos(q1 + q2)

�
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Fig. 3. Simulated bimanual robot system.

and

Js =
�

1
0

�
and

NT =
�

1 0 − l1(s1 + c1) − l2(s12 + c12)
0 1 − l2(s12 + c12)

�

ṄT =
�

0 0 l1(s1 − c1)q̇1 − l2(s12 − c12)(q̇1 + q̇2)
0 1 l2(s12 − c12)(q̇1 + q̇2)

�
.

The TM robot is chosen as a two-link manipulator, and its
dynamics is given by

Mt (qt)q̈t + Ct(qt , q̇t )q̇t + Gt(qt) = τt + J T
t (qt) ft (64)

where

Mt =
�

M11 M12

M21 M22

�
with

M11 = (m1 + m2)l
2
1 + m2l2

2 + 2m2l1l2 cos(q2)

+I1 + I2; M12 = m2l2
2 + m2l1l2 cos(q2) + I2;

M22 = m2l2
2 + I2

Ct =
�−cq̇2 −c(q̇1 + q̇2)

cq̇1 0

�

with c = m2l1l2 sin(q2); and Gt = [v1g, v2g]T , with v1 =
(m1+m2)l1 cos(q2)+m2l2 cos(q1+q2) and v2 = m2l2 cos(q1+
q2). The SM is a one-link translate manipulator, and its
dynamics can be described as

Msq̈s = τs − Js(qs)DT
t ηtξ (65)

where ms = 0.1, Dt = I , and ηt = [1/
√

2,−1/
√

2]T . The
parameters of the links are given in Table II.

The tracking trajectory of the object is given as xod =
0.15(1 − sin(t + 12)), and the desired trajectory on the object
surface is defined as xtod = −1.5/12 cos(t + 2) and ytod =
−1.5/12 cos(t + 2). The desired contact force is set to ξd =
2N . The initial conditions of the robot joints are set to q1 = 0,
q2 = 2, q̇1 = 0, and q̇2 = 0. The initial object position is set

TABLE II

NOMENCLATURE OF THE COORDINATION SYSTEM

Fig. 4. Tracking performance of the object position xod.

Fig. 5. Tracking performance of the joint position q1.

to xod = and ẋod = 0. The control gains are selected as K2 =
diag(15, 10) and � = diag(15, 20), with the command filtered
parameters being κ = 1 and σ = 50. Assume that the robot
dynamics Mt , Ms , Ct , and Gt are unknown to users, and an
RBFNN with 28 = 256 nodes is employed to cancel the effect
of dynamic uncertainties, with the centers placing on a regular
lattice as [−1, 1] × [−1.5, 1.5] × [−0.5, 0.5] × [−0.5, 0.5] ×
[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]. The gains of the NN are
selected as β = 15 and λω = 1. The NN is initialized with
W (0) = 0 and S(0) = 0. To further verify the superiority of
the proposed bimanual control algorithm, comparative studies
have also been conducted using the traditional PID controller
and the NN learning control (NNLC) in [41].

Next, we analyze the tracking performance of the proposed
control scheme. Figs. 4–6 show the typical performance of
qs , q1, and q2 under the proposed controller, a well-turned
PID controller, and an NNLC controller. We can see from the
figures that the proposed composite learning control scheme
follows the reference trajectory very well with high track-
ing precision. On the other hand, the tracking of NNLC is
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Fig. 6. Tracking performance of the joint position q2.

Fig. 7. Tracking error of joint angles e1.

Fig. 8. Tracking error of joint angles e2.

better than the PID controller; however, steady-state position
tracking errors still can be observed. The tracking errors of
the controllers were depicted, as shown in Figs. 7 and 8.
We can see from the figures that the tracking errors of the
proposed controller are less than 0.01 rad in a few seconds
with fast convergence. As a comparison, the PID controller
demonstrates large tracking errors in the steady state. Although
the NNLC achieves adequate control precision, the setting
time is less than the proposed controller, and also small
tracking errors existed. The peak of the tracking error of
the proposed controller is nearly 70% lower than the case
of the NNLC controller. Therefore, the proposed controller
demonstrates better control performance than the other two
controllers. Fig. 9 shows the filter error of α̃c. We can see that
the filter error is less than 0.001, which implies an accurate
approximation of the command derivative.

The NN learning performance and weight convergence are
depicted, as shown in Figs. 10–16, where the proposed com-
posite learning algorithm and the NNLC are compared. We can

Fig. 9. Filter error of the command filter α̃.

Fig. 10. Approximation performance of the NN with and without composite
learning.

Fig. 11. Converge of NN weights W1 with composite learning.

Fig. 12. Approximation performance of the NN with and without composite
learning.

Fig. 13. Converge of NN weights W2 with composite learning.

see from the figures that the approximation of the unknown
function f (xc) is successful (dotted line “.-") by the proposed
composite learning method. For the NNLC, the approximation
of f (xc) is not achieved (dotted line “–"). Figs. 11–15 show
that the NN weight parameters converge to constant values in
about 10 s, a time interval after which the overall tracking
performance remains substantially unvaried. The convergence
of the NN norm is depicted in Fig. 16, where the convergence
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Fig. 14. Approximation performance of the NN with and without composite
learning.

Fig. 15. Converge of NN weights W3 with composite learning.

Fig. 16. Norm of the NN weights.

of NN weight can be observed in a more direct manner. Thus,
the effectiveness of the proposed composite learning algorithm
is demonstrated.

V. CONCLUSION

In this article, we investigate the control design for bimanual
robots to perform the relative motion. The dynamic modeling
of the bimanual robot system is conducted using a holo-
nomic kinematic constraint. The command filtered backstep-
ping method is employed for the controller design. Moreover,
a composite learning algorithm is developed for the adaptation
of RBFNN by using the integration of learning errors. The
stability analysis is conducted through the Lyapunov theory.
Finally, the effectiveness and superiority of the proposed com-
posite learning algorithm are demonstrated through compara-
tive simulation studies. Future work includes the asymmetric
bimanual control of dual-arm robot with the nonrigid surface
by using the reinforcement learning method.
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